Advanced Strategies in Clinical Trials: Optimal Design for Multiple Dose and Adaptive Information Borrowing with SAM

Presenter: Peng Yang

Sep 26, 2024

Peng Yang (Rice University)

Sep 26, 2024

Contents

□ Introduction

Oncology trial design

□ Part 1: Design and Sample Size Determination for Multi-Dose Randomized Trial

□ Structured null and alternative hypothesis

Definition of generalized global type I error and powers

□ Sample size determination and decision rules

□ Part 2: Self-adapting Mixture Prior to Dynamically Borrow Information from Historical Data

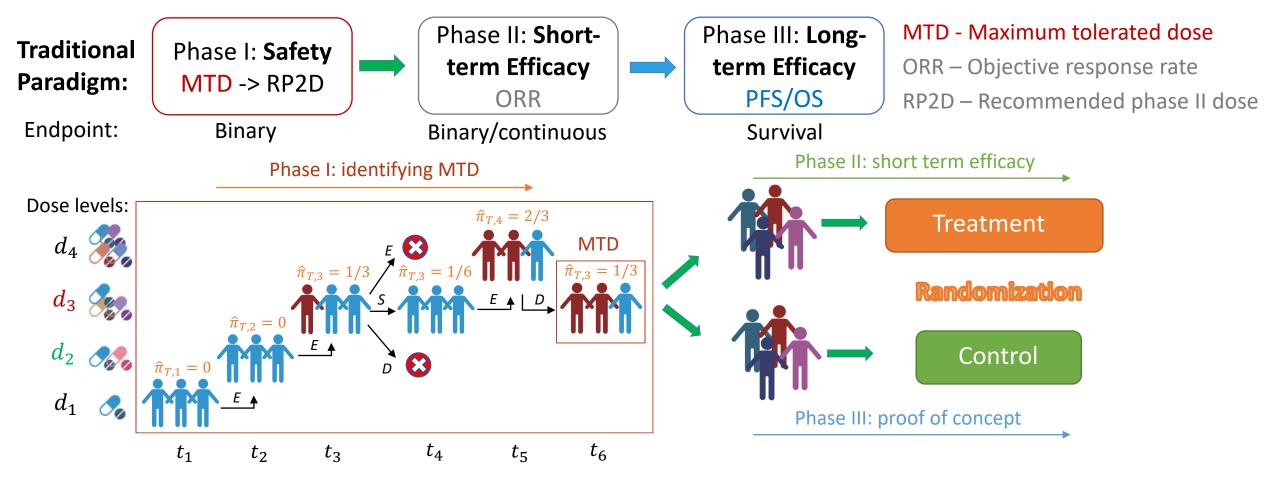
□ Mixture prior to leverage historical information

□ Self-adapting mixture weight to dynamically account for prior-data conflicts

Collaborative Work

Background – Oncology trial design

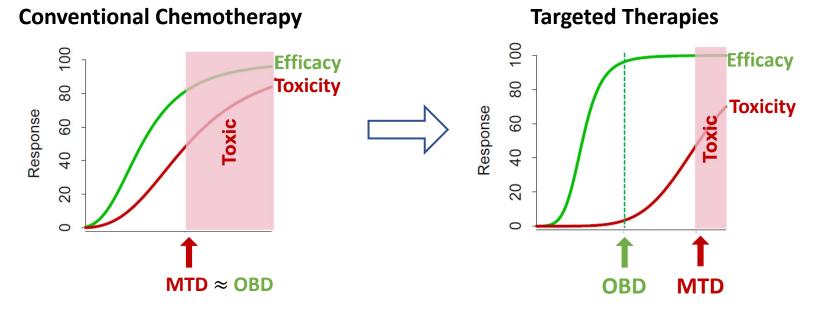
---- Background – Oncology trial design



Background and Literature Survey

In 2022, FDA initiated Project Optimus "to reform the dose optimization and dose selection paradigm in oncology drug development."

Paradigm shifting from maximum tolerated dose (MTD) to optimal biological dose (OBD).

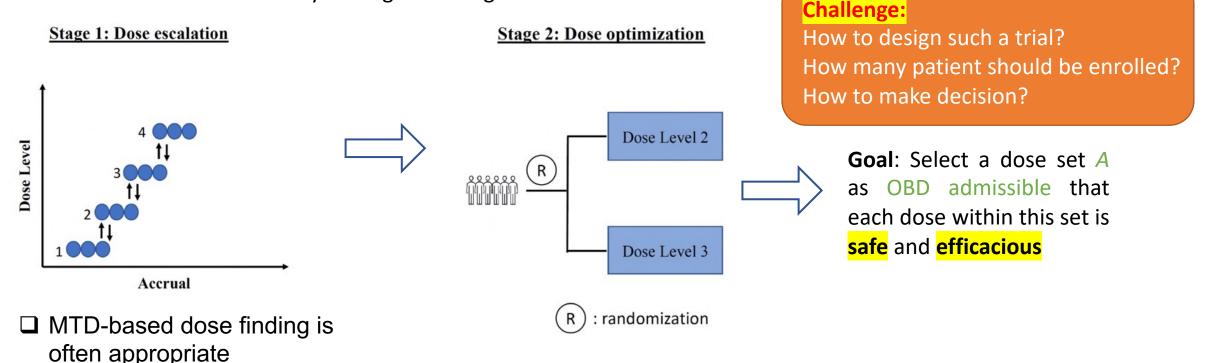


MTD-based dose finding is often appropriate to inform RP2D Safety alone is not sufficient to inform optimal RP2D

→ Background – Design strategies to find OBD

Trial designs to compare multiple dosages (FDA, 2023)

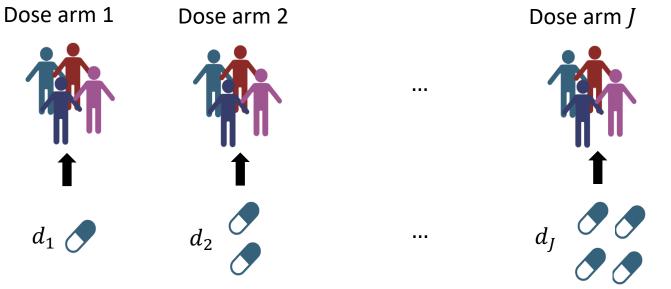
- The trial should be sized to allow for sufficient assessment of activity, safety, and tolerability for each dosage.
- □ The trial does not need to be powered to demonstrate statistical superiority of a dosage or statistical non-inferiority among the dosages.



→ Methodology: Set ups

Consider a multiple-dose randomized trial, where a total of $J \times n$ patients are equally randomized to J doses, with with $d_1 < d_2 < \cdots < d_J$.

□ The In most applications, J = 2 or 3, and d_J is often the MTD or maximum administered dose.



 \Box Y_T and Y_E denote the binary toxicity and efficacy endpoints, respectively.

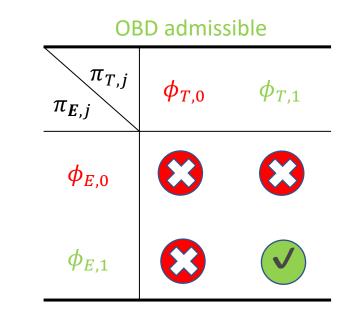
 \Box Example of Y_T : dose-limiting toxicity, dichotomized total toxicity burden.

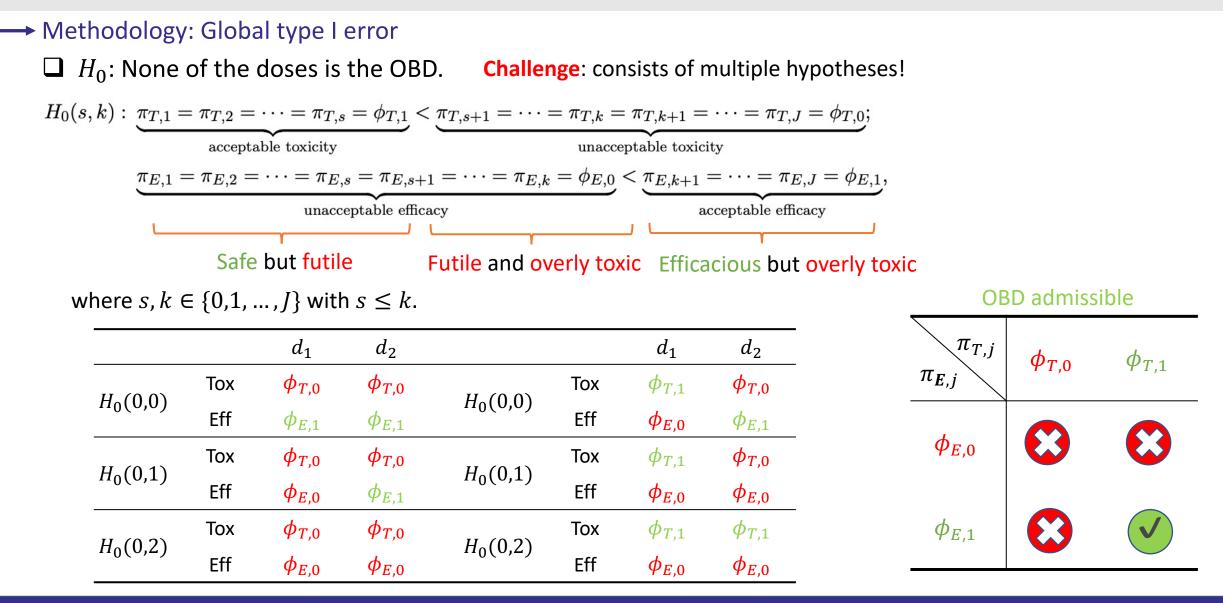
 \Box Example of Y_E : objective responses, efficacy surrogate endpoints.

Methodology: Assumptions

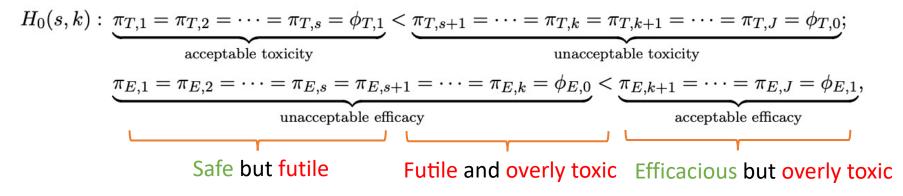
- □ Let $\pi_{T,j} = \Pr(Y_T = 1|d_j)$ and $\pi_{E,j} = \Pr(Y_E = 1|d_j)$ denotes the probability of the occurrence of toxicity and efficacy events.
- Assuming that $\pi_{T,j}$ and $\pi_{E,j}$ are **non-decreasing** with respect to the increasing of dose levels. Randomized dose optimization trials with same drug but with **ordered doses**.
- □ For toxicity endpoint, we assume
 - $\phi_{T,0}$: the **null toxicity** rate that is high and deemed **unacceptable**;
 - $\phi_{T,1}$: the alternative toxicity rate that is low and deemed acceptable;
- □ For efficacy endpoint, we assume
 - $\phi_{E,0}$: the **null efficacy** rate that is low and deemed **unacceptable**;
 - $\phi_{E,1}$: the **alternative efficacy** rate that is high and deemed **acceptable**

Challenge: How to modeling joint toxicity and efficacy data? How to account for the fact that doses are ordered





 \Box H_0 : None of the doses is the OBD. Challenge: consists of multiple hypotheses!



where $s, k \in \{0, 1, \dots, J\}$ with $s \leq k$, and

Define global type I error that encompasses all $H_0(s, k)$ as follows:

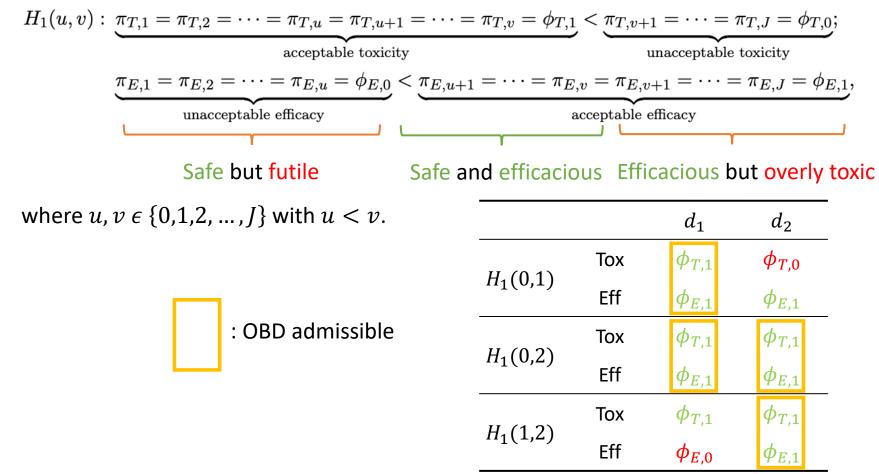
$$\alpha = \Pr(\text{reject } H_0 | H_0)$$
$$= \max_{0 \le s \le J, \ s \le k \le J} \{\alpha(s, k)\}$$

where $\alpha(s, k) = \Pr(\operatorname{reject} H_0(s, k) | H_0(s, k)).$

Methodology: Generalized powers

 \Box Consider H_1 : At lease one does is the OBD admissible

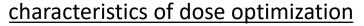
challenge: Consists of multiple hypotheses

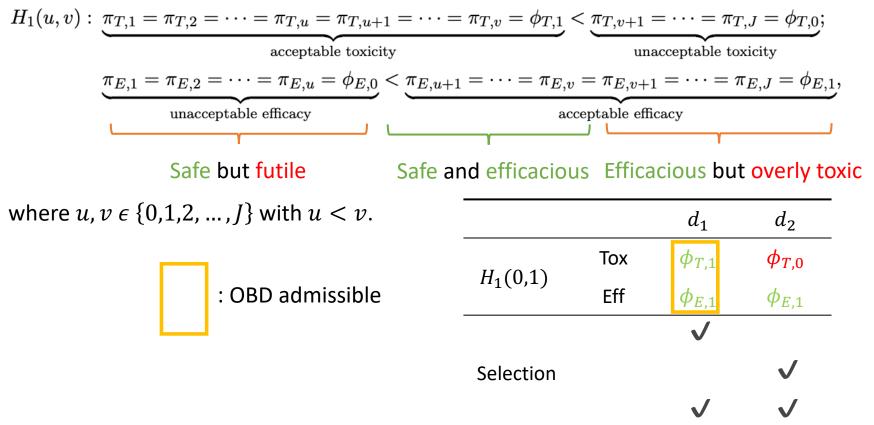


Methodology: Generalized powers

 \Box Consider H_1 : At lease one does is the OBD admissible

 \Box challenge: the standard definition of power, which reject the H_1 , is not sufficient to account for the





Methodology: Generalized powers

• Generalized power I:

 $\beta_1(u, v) = \Pr\left(\begin{array}{c} \operatorname{reject} H_0 \text{ and all does in } A \text{ are truly} \\ \operatorname{safe and efficacious} \end{array} \middle| H_1(u, v) \right).$

where A denotes the admissible dose set selected by the design.

 Generalized power 	H(0,1)	Тох	$\phi_{T,0}$					
$\beta(u, v) = \Pr(re)$	$H_1(0,1)$	Eff	$\phi_{E,1}$	$\phi_{E,1}$				
$p_2(u, v) = 11$	$\beta_2(u, v) = \Pr\left(\begin{array}{c} \operatorname{reject} H_0 \text{ and at leaset one doe in } A \text{ are truly} \\ \text{safe and efficacious} \end{array} \middle H_1(u, v) \right).$						\checkmark	
-		β_1	β_2		Selection			\checkmark
-	Tolerate false	· · ·		-			\checkmark	\checkmark
	positive	~	V					

- Both generalized powers are stricter than the standard power.
- The choice of power depends on the characteristics of the trial and user's tolerability of false positive.
- Power II is a good option when reducing the sample size is of top priority.

 d_1

 d_2

Theorem 1 Define the least favorable set $\widetilde{H}_1 = \{H_1(j), j = 1, \dots, J\}$, where

For any $H_1(u, v)$, with $u, v \in \{0, 1, 2, ..., J\}$ and u < v, there exists an $H_1(j)$ such that $\beta_i(j) \leq \beta_i(u, v)$, i = 1, 2, where $\beta_1(j)$ and $\beta_2(j)$ denote the generalized power I and II under $H_1(j)$, respectively.

Global power I and II can be minimized as follows:

$$\beta_i = \underset{j \in \{1,...,J\}}{\arg\min} \beta_i(j) \text{ for } i = 1, 2.$$

→ Methodology: The MERIT design

```
□ MERIT (Multiple-dosE RandomIzed Phase-II Trial)
```

```
\Box Specify target global type I error and power \alpha^* and \beta^*;
```

```
\Box Randomize J \times n patients equally to J doses;
```

 \Box In any dose arm d_i , if $n_{E,i} \ge m_E$ and $n_{T,i} \le m_T$, we reject H_0 and claim

that d_j is OBD admissible, where m_T and m_E are decision boundaries for toxicity and efficacy, respectively.

 ${}^{*}n_{E,j}$ and $n_{T,j}$ are the total number of patients who experience efficacy and toxicity events in dose arm d_{j} .

Methodology: Determine design parameters

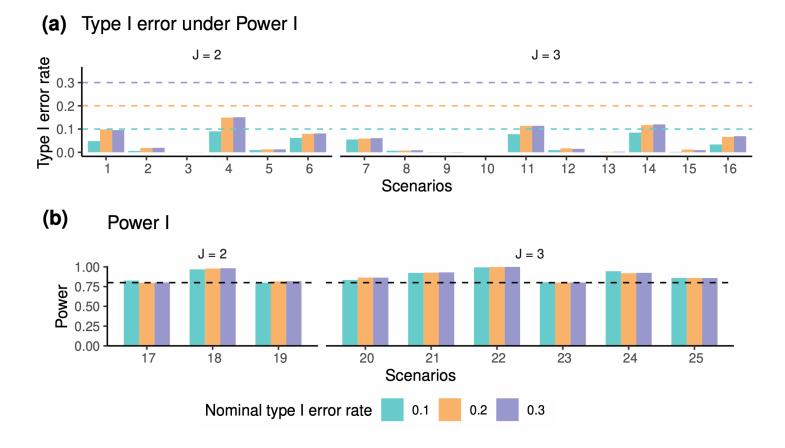
- Given the pre-specified global type I error α^* and global power β_1^* or β_2^* , MERIT design can obtain the optimal design parameters (n, m_T, m_E) through numerical search using the following algorithm:
- 1. Set n = 1, ..., N, where N is a large number;
- 2. Given a value of n, enumerate all possible values of $m_E, m_T \in (0, 1, ..., n)$. Given a set of (n, m_T, m_E) , calculate the type I error and powers β_1 or β_2 ;
- 3. Repeat steps 1 and 2 untie we find the smallest n and corresponding m_E and m_T , such that $\alpha \leq \alpha^*$ and $\beta_1 \geq \beta_1^*$ or $\beta_2 \geq \beta_2^*$.

			β	1		β_2						
β^*	$\alpha^* = 0.1$			$\alpha^* = 0.2$			$\alpha^* = 0.1$			$\alpha^* = 0.2$		
	n	m_T	m_E	n	m_T	m_E	n	m_T	m_E	n	m_T	m_E
0.6	26	7	6	23	6	26	25	6	5	18	5	4
0.7	33	9	7	30	8	33	33	8	6	24	7	5
0.8	44	12	8	39	11	44	39	11	8	30	8	5

Optimal design parameters (n, m_T, m_E) of MERIT design, when J = 2, $(\phi_{T,0}, \phi_{T,1}) = (0.4, 0.2)$, and $(\phi_{E,0}, \phi_{E,1}) = (0.2, 0.4)$.

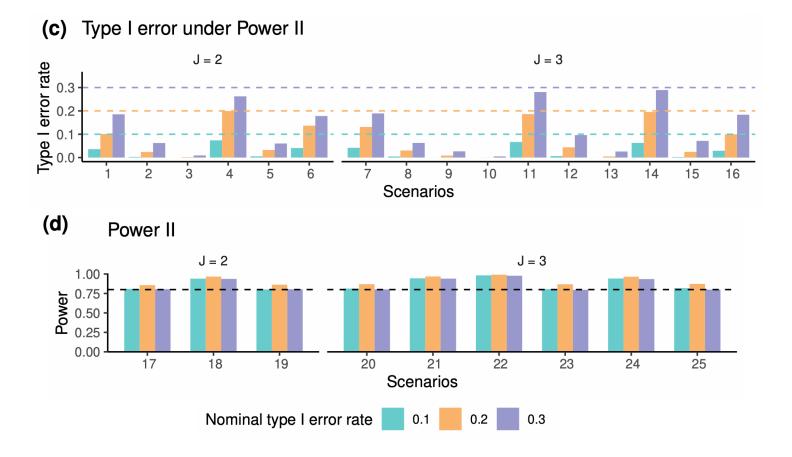
Operating Characteristics: under power I

Type I error and power of MERIT design when $(\phi_{T,0}, \phi_{T,1}) = (0.4, 0.2)$, and $(\phi_{E,0}, \phi_{E,1}) = (0.2, 0.4)$.



→ Operating Characteristics: under power II

Type I error and power of MERIT design when $(\phi_{T,0}, \phi_{T,1}) = (0.4, 0.2)$, and $(\phi_{E,0}, \phi_{E,1}) = (0.2, 0.4)$.



Software: shiny app on www.trialdesign.org

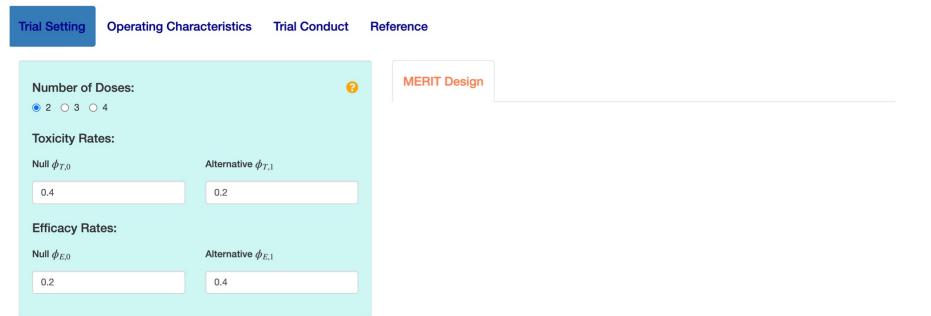
HOME SOFTWARE OUR TEAM PUBLICATIONS CONTACT

MERIT: Multiple-dose Randomized Phase II Trial Design for Dose Optimization and Sample Size Determination

PID: 1126; Version: V1.1.0.0 ; Last Updated: 2/18/2023

Peng Yang and Ying Yuan

Department of Biostatistics, The University of Texas MD Anderson Cancer Center



→ Software: shiny app on www.trialdesign.org

Global Type I	Error Rate:	8
0.2		
Generalized F	Power:	
Power I 🔘 P	Power II	
0.8		
Inlucde toxicity	y and futility monitoring	
-	timize the Design:	•
-	veen toxicity and efficacy	8
Correlation betw	veen toxicity and efficacy	0
Correlation betw ● positive ○ n	veen toxicity and efficacy	6
Correlation betw positive n Correlation	egative	1 0.9 1
Correlation betw positive n Correlation	O.5 0.3 0.4 0.5 0.6 0.7 0.8	
Correlation betw positive n Correlation 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	O.5 0.3 0.4 0.5 0.6 0.7 0.8	
Correlation betw positive n Correlation 0 0.1 0.2 Number of simul 5000	O.5 0.3 0.4 0.5 0.6 0.7 0.8	
Correlation betw positive n Correlation 0 0.1 0.2 Number of simul 5000	egative 0.5 0.3 0.4 0.5 0.8 0.7 0.8 ations	

HOME SOFTWARE OUR TEAM PUBLICATIONS CONTACT

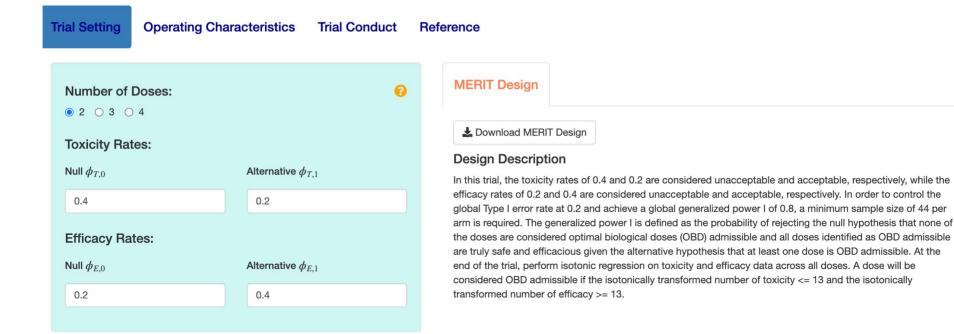
Peng Yang (Rice University)

MERIT: Multiple-dose Randomized Phase II Trial Design for Dose Optimization and Sample Size Determination

PID: 1126; Version: V1.1.0.0 ; Last Updated: 2/18/2023

Peng Yang and Ying Yuan

Department of Biostatistics, The University of Texas MD Anderson Cancer Center



Software: shiny app on www.trialdesign.org

Global Type I Error Rate: 6	Global Ty
0.2	0.2
Generalized Power: Power I O Power II	Generaliz Power I
0.8	0.8
Inlucde toxicity and futility monitoring	Inlucde to
	Interim Input the separated Efficacy 1/2
	Stoppin Stop for f
	0.95
	Stop for t
	0.95

Global Type I Error Rate:		0
0.2		
Generalized Power: Power I O Power II 0.8 Inlucde toxicity and futility monito	ring	
Interim Times: Input the fraction of the total sam separated by space.	ple size at interims,	0
Efficacy	Toxicity	
	Toxicity	
1/2	1/3 2/3	
Stopping Criteria: Stop for futility if $p(\pi_{E,j} < \phi_{E,1} dd)$	1/3 2/3	
Stopping Criteria:	1/3 2/3	
Stopping Criteria: Stop for futility if $p(\pi_{E,j} < \phi_{E,1} dd)$	$1/3 2/3$ (<i>ita</i>) > C_E , where C_E	

Software: shiny app on www.trialdesign.org

Number of Doses: ● 2 ○ 3 ○ 4	•
Toxicity Rates:	
Null $\phi_{T,0}$	Alternative $\phi_{T,1}$
0.4	0.2
Efficacy Rates:	
Null $\phi_{E,0}$	Alternative $oldsymbol{\phi}_{E,1}$
0.2	0.4

Global Type I Error Rate:	0
0.2	
 Generalized Power: Power I O Power II 	
0.8	
Inlucde toxicity and futility monitoring	
Interim Times:	0

MERIT Design

🛓 Download MERIT Design

Design Description

In this trial, the toxicity rates of 0.4 and 0.2 are considered unacceptable and acceptable, respectively, while the efficacy rates of 0.2 and 0.4 are considered unacceptable and acceptable, respectively. In order to control the global Type I error rate at 0.2 and achieve a global generalized power I of 0.8, a minimum sample size of 45 per arm is required. The generalized power I is defined as the probability of rejecting the null hypothesis that none of the doses are considered optimal biological doses (OBD) admissible and all doses identified as OBD admissible are truly safe and efficacious given the alternative hypothesis that at least one dose is OBD admissible. At the end of the trial, perform isotonic regression on toxicity and efficacy data across all doses. A dose will be considered OBD admissible if the isotonically transformed number of toxicity <= 13 and the isotonically transformed number of efficacy >= 13.

During the trial, the toxicity and efficacy of each dose arm will be monitored independently using the stopping criteria outlined in Table 1. If the isotonically transformed toxicity and efficacy acrosss topping boundaries, enrollment in that particular dose arm will be suspended.

CSV Excel PDF Print	ficacy. Sea	rch:
# of patients treated	Stop if # toxicity >=	Stop if # efficacy <=
15	6	NA
23	NA	5
30	10	NA
Showing 1 to 3 of 3 entries Note: 'NA' means that this endpoint will not be u	used to make go/no-go decision a	Previous 1 Next t the interim

Software: shiny app on www.trialdesign.org

HOME SOFTWARE OUR TEAM PUBLICATIONS CONTACT

MERIT: Multiple-dose Randomized Phase II Trial Design for Dose Optimization and Sample Size Determination

PID: 1126; Version: V1.1.0.0 ; Last Updated: 2/18/2023

Peng Yang and Ying Yuan

Department of Biostatistics, The University of Texas MD Anderson Cancer Center

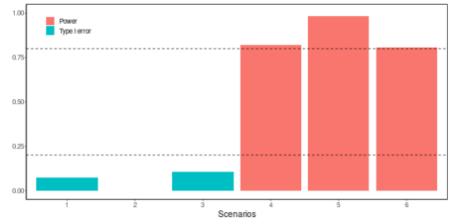
ter	Simulatio	n Scen	arios:					Operating Characteristics
C A	dd a scenar	rio	Re	move a	scenario	Save sce	enarios	
or eac	h scenario,			y and eff Tox(d2)		e of each dose leve	el:	
	Scenario 1	0.40	0.40	0.40	0.40			
	Scenario 2	0.40	0.20	0.40	0.20			
	Scenario 3	0.20	0.20	0.20	0.20			
	Scenario 4	0.20	0.40	0.40	0.40			
	Scenario 5	0.20	0.40	0.20	0.40			
	Scenario 6	0.20	0.20	0.20	0.40			
umbe	r of simulati	ions				Set seed		
5000						123		
				Run Simu	lation			

→ Software: shiny app on www.trialdesign.org

opy CSV Excel Print						Search:	
Scenarios	÷	Metrics	$\frac{1}{2}$	Values	÷	Average sample size	
1		Type I error		0.075		45	
2		Type I error		0.000		45	
3		Type I error		0.104		45	
4		Power		0.821		45	
5		Power		0.982		45	
6		Power		0.805		45	

🛓 Download Figure 1

Figure 1. Type I error and power of MERIT design when unacceptable and acceptable toxicity rates are 0.4 and 0.2, and unacceptable and acceptable efficacy rates are 0.2 and 0.4. The horizontal dashed lines represent the nominal values of type I error (0.2) and power I (0.8).



Peng Yang (Rice University)

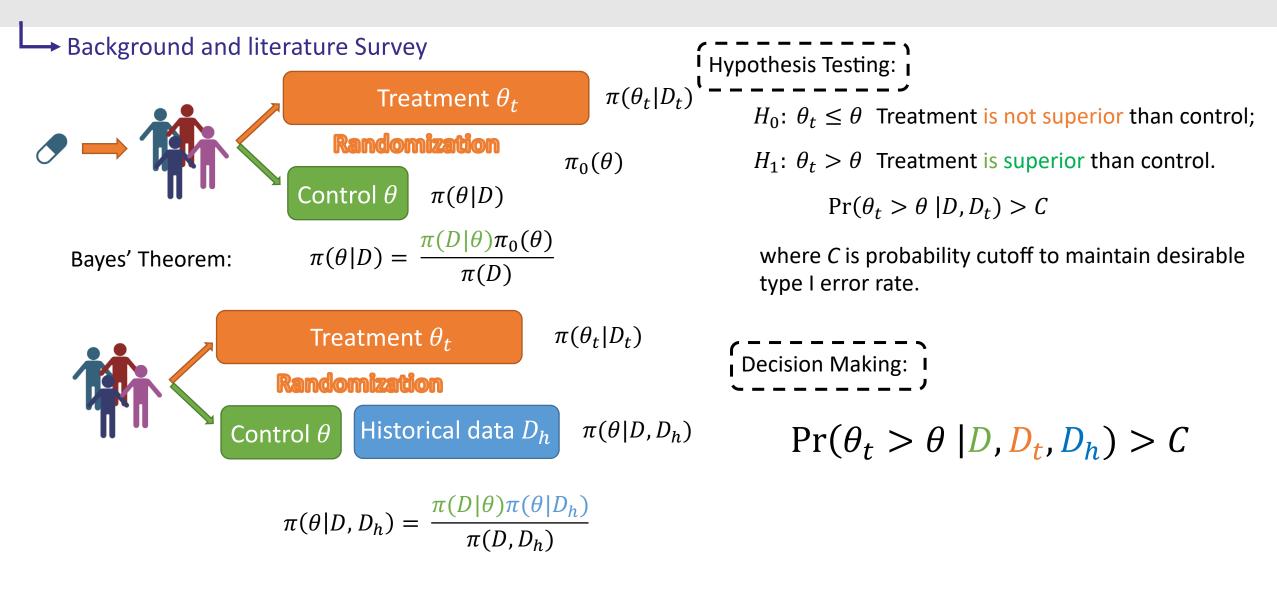
→ Conclusion

In this project, we proposed MERIT design for a multiple dose randomized clinical trial by considering both toxicity and efficacy data.

- MERIT design provides a rigorous statistical framework for sample size determination and optimal dose selection.
 - This design extends beyond the traditional hypothesis testing framework, introducing structure null and alternative hypothesis to account for the ordered nature of doses across arms.
 - The sample size is determined by rigorously defining a generalized type I error and power,
 - showing a sample size 20 to 40 per dosage arm often offers reasonable type I error and power.

This wok has been published in *Statistics in Medicine*.

□ MERIT design is available on www.trialdesign.org as a shiny app.



Background and literature Survey

- Borrowing information from historical or real-world data has great potential to improve the efficiency and feasibility of clinical trials.
- □ In the literature

- Ibrahim et al. (2000) proposed power priors, which use a power parameter to acknowledge the possibility of priordata conflict and discount the historical data for information borrowing;
- □ Hobbs et al. (2011) proposed commensurate priors that control information borrowing based on the
 - commensurability between historical data and current data; $\pi(\theta|D_h, \tau) \propto L(\theta|D_h)\pi(\theta|\theta_h, \tau)\pi_0(\theta)$
- Schmidli et al. (2014) proposed robust meta-analytic predictive (MAP) prior, which mixes a MAP prior with a

vague prior. $\pi(\theta|D_h) = w L(\theta|D_h)\pi_0(\theta) + (1-w)\pi_0(\theta)$

It is important to acknowledge the prior data conflicts, and the neglect of this may cause a loss of power and inflate the type I error.

→ Methodology: Mixture prior

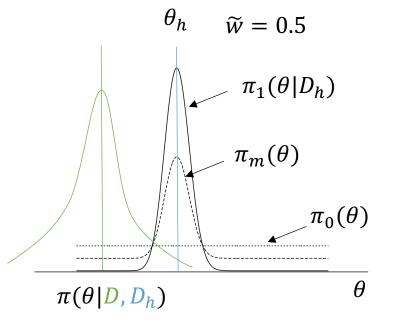
To acknowledge the possibility of prior-data conflict and improve the robustness of the inference, Schmidli et al. (2014) proposed mixture priors:

$$\pi_m(\theta) = \tilde{w}\pi_1(\theta) + (1 - \tilde{w})\pi_0(\theta),$$

where \tilde{w} is a pre-specified fixed mixing weight that controls the degree of information borrowing from D_h .

 $\square \ \pi_1(\theta) \text{ is an informative prior } \pi_1(\theta|D_h) \text{ that has been constructed}$ based on historical D_h using a certain methodology.

- \square $\pi_0(\theta)$ denotes a non-informative or vague prior.
- □ Ideally, the mixing weight \tilde{w} should reflect the degree of relevance of the historical data to the new trial
- Unfortunately, such information is rarely known as *a priori*.



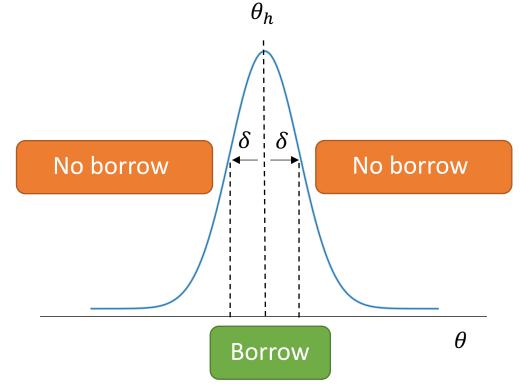
Methodology: Self-adapting mixture prior

To account for potential prior-data conflict, we propose an empirical way of pre-determine w that takes both historical data and current trial data into consideration:

□ Let θ_h denote the treatment effect associated with D_h , which could be the same as or significantly different from

 θ ;

□ Let δ denote a clinically significant difference (CSD) in the treatment effect such that if $|\theta_h - \theta| \ge \delta$, θ_h and thus it is not clinically sound to borrow any information from D_h .



Methodology: Self-adapting mixture prior

 \Box To proceed, we define two models (or hypotheses), denoted by H_0 and H_1 ,

$$H_0: \theta = \theta_h, \qquad H_1: \theta = \theta_h + \delta \text{ or } \theta = \theta_h - \delta.$$

 \Box Under H_0 , $\pi_1(\theta)$ and D are consistent, thus it is appropriate to use $\pi_1(\theta)$ to borrow information from D_h ;

□ Under H_1 , the treatment effect of D and D_h are different to the degree that no information should be borrowed, thus, $\pi_0(\theta)$ should be used for the posterior inference of θ .

 \Box We propose to use the likelihood ratio as the evidence of favoring H_1 versus H_0 in a data-driven way,

$$R = \frac{p(D|H_0, \theta)}{p(D|H_1, \theta)} = \frac{p(D|\theta = \theta_h)}{\max\{p(D|\theta = \theta_h + \delta), p(D|\theta = \theta_h - \delta)\}},$$

where *R* is the likelihood ratio statistics.

Methodology: Self-adapting mixture prior

□ The self-adjusting mixture prior is formed as

$$\pi_{sam}(\theta) = w\pi_1(\theta) + (1-w)\pi_0(\theta),$$

where $w = \frac{R}{1+R}$ is the SAM weight.

□ It is important to note that, unlike the fixed-weight mixture prior, where its mixing weight \tilde{w} is a constant, w is a function of D and D_h (i.e., data-dependent).

Theorem 2 The SAM prior converges to $\pi_1(\theta)$ if D_h and D_c are congruent (i.e., $\theta_h = \theta$), and converges to $\pi_0(\theta)$ if D_h and D_c are incongruent (i.e., $|\theta - \theta_h| = \delta$)

Methodology: Example with binary endpoints

Consider a binary endpoint $y_1, y_2, ..., y_n \sim Bernoulli(\theta)$.

 \Box Let $x = \sum_{i=1}^{n} y_i$ denote the number of responses among n subjects treated in the control arm

□ let x_h and n_h denote the corresponding number of responses and subject in the historical data $\pi_1(\theta) = Beta(a + x_h, b + n_h - x_h),$

where the informative prior $\pi_1(\theta)$ is constructed based on a vague prior $\pi_0(\theta) = Beta(a, b)$.

□ Let $\hat{\theta}_h = (a + x_h)/(a + b + n_h)$, the SAM prior is given by $\pi_{sam}(\theta) = wBeta(a + x_h, b + n_h - x_h) + (1 - w)Beta(a, b),$

where w = R/(1+R) with

$$R = \frac{\hat{\theta}_h^x (1-\hat{\theta}_h)^{n-x}}{\max\left\{(\hat{\theta}_h+\delta)^x (1-\hat{\theta}_h-\delta)^{n-x}, (\hat{\theta}_h-\delta)^x (1-\hat{\theta}_h+\delta)^{n-x}\right\}}$$

Methodology: Example with binary endpoints

 \Box Owing to its conjugacy, given $\pi_{sam}(\theta)$ and trial data *D*, the posterior of θ is given by

$$p(\theta|D, D_h) = w^*Beta(a + x_h + x, b + n_h + n - x_h - x) + (1 - w^*)Beta(a + x, b + n - x),$$

where w^* is the re-weighted w by the posterior normalizing constant associated with each mixture component. Specifically,

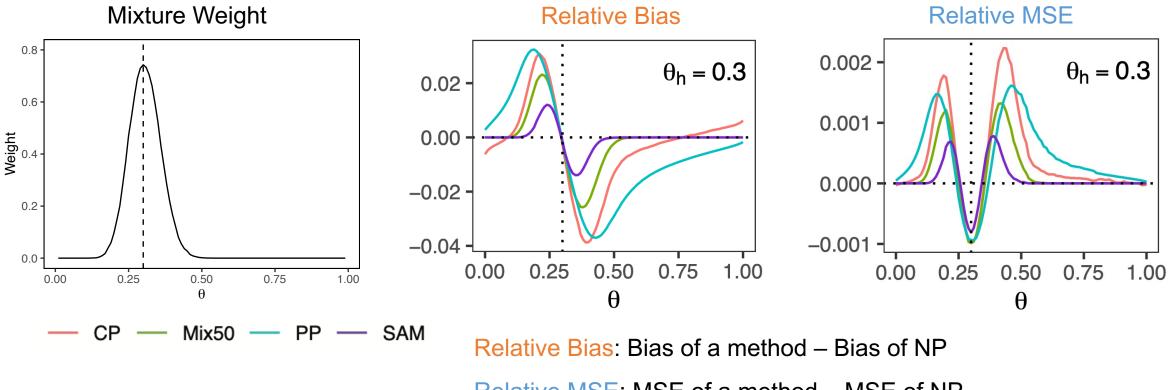
$$w^* = rac{wz_1}{wz_1 + (1 - w)z_0},$$

 $z_0 = rac{B(a + x, n - x + b)}{B(a, b)},$
 $z_1 = rac{B(a + x_h + x, b + n_h + n - x_h - x)}{B(a + x_h, b + n_h - x_h)},$

where $B(\cdot, \cdot)$ stands for beta function.

Methodology Application: Example with binary endpoints

For binary case, we considered $\theta_h = 0.3$, $\delta = 0.1$, $n_h = n_t = 300$; n = 150.



Relative MSE: MSE of a method – MSE of NP

---- Methodology Application: Example with binary endpoints

D For binary case, we considered $\theta_h = 0.3$, $\delta = 0.1$, $n_h = n_t = 300$; n = 150.

Scenario	οθ	θ_t	NP	SAM	Mix50	PP	СР		
Congrue	ent							_	<u> </u>
2.1 ^a	0.3	0.3	0.050	0.051	0.050	0.051	0.050	Type I error	
2.2	0.3	0.4	0.657	0.888	0.894	0.890	0.902		
2.3	0.31	0.41	0.649	0.882	0.908	0.912	0.912	- Power	
2.4	0.28	0.38	0.667	0.852	0.854	0.839	0.840		
Incongr	uent								
2.5 ^a	0.4	0.4	0.048	0.140	0.208	0.260	0.310		
2.6 ^a	0.45	0.45	0.049	0.079	0.122	0.253	0.186	F Type I error	
2.7	0.2	0.3	0.720	0.711	0.544	0.554	0.453	Dowor	
2.8	0.17	0.27	0.773	0.804	0.646	0.544	0.518	- Power	

Decision Making:

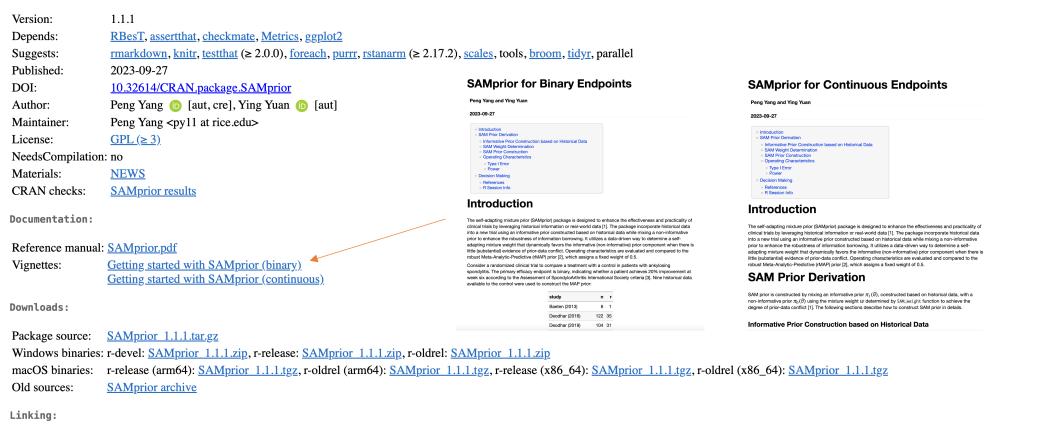
$\Pr(\theta_t > \theta \mid D, D_t, \frac{D_h}{D_h}) > C$

Message:

SAM prior preserves good power while maintaining better type I error control

SAMprior: Self-Adapting Mixture (SAM) Priors

Implementation of the SAM prior and generation of its operating characteristics for dynamically borrowing information from historical data. For details, please refer to Yang et al. (2023) < doi:10.1111/biom.13927>.



Please use the canonical form <u>https://CRAN.R-project.org/package=SAMprior</u> to link to this page.

Peng Yang (Rice University)

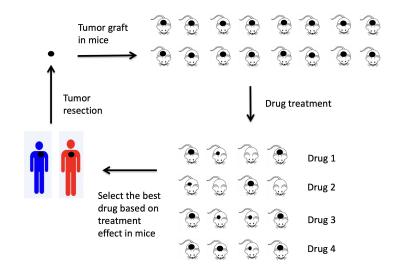
□ In this project, we proposed SAM prior to dynamically borrow information from historical data to current randomized clinical trials.

SAM prior is an empirical Bayesian approach that determines the mixing weight using likelihood ratio test statistics or Bayes Factor based on outcome data.

- □ SAM priors are data-driven and self-adapting, favoring the informative (noninformative) prior component when there is little (substantial) evidence of prior-data conflicts.
- □ The paper is published on *Biometrics*.
- SAM package is available on CRAN https://cran.r-project.org/web/packages/SAMprior/index.html;
- □ Propensity score-integrated (PS-SAM) will be released on CRAN soon.

Additional Thesis Research

Precision Medicine and predictive biomarker identification

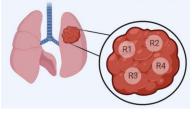


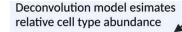
Avatar-driven clinical trials for precision medicine

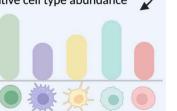
- We proposed a Bayesian adaptive design for avatar-driven cancer clinical trials
 - □ Stage I: equal randomization (run-in phase)
 - Stage II: adaptive randomization (adaptive select optimal treatment for each patient)
- □ Predict the population that is sensitive to avatar responses

Quantifying intratumor heterogeneity from multi-region transcriptomic data

Multi-region sequencing design







- U We proposed a hierarchical Bayesian model for multi-region RNA data
 - Estimate the immune cell proportion while accounting for within subject correlation
 - Quantify the intratumor heterogeneity by the variability of immune cell proportions
- Utilize variance inference for optimization to enhance the scalability

Collaborative Research

□ I served as Graduate Research Assistant at The Coordination and Data Management Center (CDMC) in

MD Anderson Cancer Center

- □ Maintenance and development of existing R programs to monitor enrollment, check data quality
- □ Engaged in weekly meetings with investigators and physicians to address and resolve statistical inquiries
- □ Conducting statistical analysis for collaborative publication in medical journals
- □ I collaborated with several projects on cancer genomic study
 - Performed deconvolution on matched whole genome sequencing and RNA sequencing data from TCGA and TRACERx study
 - Conducted sample integration, cell type annotation, differential gene expression analysis for single cell RNAseq data

Making Cancer History®

Publication and Awards

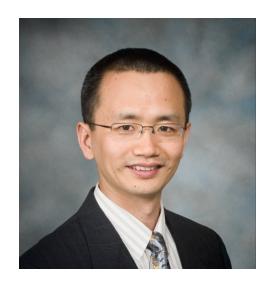
→ Thesis Research

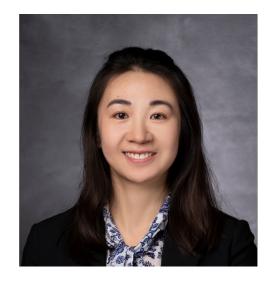
- Design and sample size determination for multiple-dose randomized phase II trials for dose optimization. Statistics in Medicine. 43, 2972-2986.
 - Selected for the 2023 ASA Biopharmaceutical Section Regulatory-Industry Statistics Workshop Student Poster Award!
- SAM: Self-adapting mixture prior to dynamically borrow information from historical data in clinical trials. *Biometrics*. 79, 2857-2868.
- □ A novel Bayesian model for assessing intratumor heterogeneity of tumor infiltrating leukocytes with multi-region gene expression sequencing. *The Annals of Applied Statistics*. 18, 1879-1898.
 - Selected for the 2023 ASA Section on Statistics in Genomics and Genetics (SGG) Student Paper Award!
- A Bayesian Adaptive Design for Avatar-Driven Cancer Clinical Trials. Submitted to *The Journal of the American Statistical Association*.

Collaborative Research

- Estimation of tumor cell total mRNA expression in 15 cancer types predicts disease progression. *Nature Biotechnology*.
- □ Transcriptomic Profiling of Plasma Extracellular Vesicles Enables Reliable Annotation of the Cancer- specific Transcriptome and Molecular Subtype. *Cancer Research*.
- □ Transcriptome data analysis: Methods in Molecule Biology. *Humana Press.*
- Exocrine Pancreatic Dysfunction in Chronic Pancreatitis: Analysis of the PROCEED Study. In Submission.
- □ Single-Cell RNA Sequencing Identifies Molecular Biomarkers Predicting Late Progression to CDK4/6 Inhibition in Metastatic HR+/HER2- Breast Cancer. *In Submission*.

Thank you





THE UNIVERSITY OF TEXAS MDAnderson Cancer Center

Making Cancer History®

Reference

- □ Hobbs, B. P., Carlin, B. P., Mandrekar, S. J., and Sargent, D. J. (2011). Hierarchical commensurate and power prior models for adaptive incorporation of historical information in clinical trials. *Biometrics*, 67(3), 1047-1056.
- Ibrahim, J. G., and Chen, M. H. (2000). Power prior distributions for regression models. *Statistical Science*, 15(1), 46-60.
- Schmidli, H., Gsteiger, S., Roychoudhury, S., O'Hagan, A., Spiegelhalter, D., and Neuenschwander, B. (2014). Robust meta-analytic-predictive priors in clinical trials with historical control information. *Biometrics*, 70(4), 1023-1032.
- □ Thall, P., Simon, R. & Ellenberg, S. (1988) Two-stage selection and testing designs for comparative clinical trials. *Biometrika*. 75, 303-310.
- □ Thall, P., Simon, R. & Ellenberg, S. (1989) A two-stage design for choosing among several experimental treatments and a control in clinical trials. *Biometrics*. pp. 537-547.
- □ U.S. Food And Drug Administration. (2022) Project Optimus: Reforming the dose optimization and dose selection paradigm in oncology. Silver Spring, MD: Food and Drug Administration.
- □ Whitehead, J. (1986) Sample sizes for phase II and phase III clinical trials: an integrated approach. *Statistics In Medicine*. 5, 459-464.