

¹Department of Statistics, Rice University

Introduction

- In 2022, FDA initiated Project Optimus "to reform the dose optimization and dose selection paradigm in oncology drug development."
- Paradigm shifting from maximum tolerated dose (MTD) to optimal biological dose (OBD).

Figure 1. Paradigm shifting for dose optimization.

- MTD-based dose finding was often appropriate to inform RP2D;
- Safety alone is not sufficient to inform optimal RP2D.

Design a trial to compare multiple dosages (FDA, 2023)

- \Rightarrow two-stage decision-making paradigm
- 1 Determination of OBD admissible dose set
- The objective is to identify a dose set (i.e., OBD admissible set A) that satisfies certain **safety** and **efficacy** requirements in a statistical manner (e.g. type I error and power).
- 2 Identification of the OBD
- The OBD will be selected from \mathcal{A} based on the totality of activity, safety, and tolerability data empirically.

Statistical Modelling

Consider a multiple-dose randomized trial, where a total of $J \times n$ patients are equally randomized to J doses, $d_1 < d_2 < \cdots < d_J$.

In most application, J = 2 or 3, and d_J is often the MTD or maximum administered dose.

- Let Y_T and Y_E denote the binary toxicity and efficacy endpoints, respectively.
- Let $\pi_{T,j} = \Pr(Y_T = 1 | d_j)$ and $\pi_{E,j} = \Pr(Y_E = 1 | d_j)$ denotes the probability of the occurrence of toxicity and efficacy events.

- $\phi_{T,0}$: the **null** toxicity rate that is **high** and deemed unacceptable;
- $\phi_{T,1}$: the **alternative** toxicity rate that is **low** and deemed acceptable;
- For efficacy endpoint, we assume
- $\phi_{E,0}$: the **null** efficacy rate that is **low** and deemed unacceptable;
- $\phi_{E,1}$: the **alternative** efficacy rate that is **high** and deemed acceptable.

Design and Sample Size Determination for RICE Multiple-dose Randomized Phase II Trials for Dose Optimization

²Department of Biostatistics, the University of Texas at MD Anderson Cancer Center ³Bristol Myers Squibb ⁴Pfizer Inc.

Global Type I Error

Consider H_0 :	none of	the doses i	s the OBD.
Challenge:	consists	of multiple	e hypotheses

Dose level

$H_0(s,k): \underbrace{\pi_{T,1} = \pi_{T,2} = \cdots = \pi_{T,s} = \phi_{T,1}}_{\text{acceptable toxicity}}$	$< \underbrace{\pi_{T,s+1} = \cdots = \pi_{T,k} = \pi_{T,k+1} = \cdots = \pi_{T,J} = \phi_{T,0}}_{\text{unacceptable toxicity}};$
$\underbrace{\pi_{E,1} = \pi_{E,2} = \cdots = \pi_{E,s} = \pi_{E,s-1}}_{\text{unacceptable efficiency}}$	$= \dots = \pi_{E,k} = \phi_{E,0} < \underbrace{\pi_{E,k+1} = \dots = \pi_{E,J} = \phi_{E,1}}_{\text{acceptable efficacy}},$

where $s, k \in \{0, 1, \ldots, J\}$ and $s \leq k$.

		d_1	d_2			d_1	d_2
	Тох	$\phi_{T,0}$	$\phi_{T,0}$		Тох	φ _{<i>T</i>,1}	$\phi_{T,0}$
$H_0(0,0)$	Eff	$\phi_{E,1}$	$\phi_{E,1}$	$H_0(0,0)$	Eff	$\phi_{E,0}$	$\phi_{E,1}$
U (0 1)	Тох	$\phi_{T,0}$	$\phi_{T,0}$	U (01)	Тох	$\phi_{T,1}$	$\phi_{T,0}$
$H_0(0,1)$	Eff	$\phi_{E,0}$	$\phi_{E,1}$	$H_0(0,1)$	Eff	$\phi_{E,0}$	$\phi_{E,0}$
<i>H</i> ₀ (0,2)	Тох	$\phi_{T,0}$	$\phi_{T,0}$	U(0.2)	Тох	$\phi_{T,1}$	$\phi_{T,1}$
	Eff	$\phi_{E,0}$	$\phi_{E,0}$	$\Pi_0(0,2)$	Eff	$\phi_{E,0}$	$\phi_{E,0}$

Define global type I error that encompasses all $H_0(s,k)$ as follows: $\alpha = \Pr(\operatorname{reject} H_0 | H_0) = \max_{0 \le s \le J, \ s \le k \le J} \{\alpha(s, k)\},\$ (1)

where $\alpha(s,k) = \Pr(\operatorname{Reject} H_0(s,k)|H_0(s,k)).$

Global Generalized Powers

Consider H_1 : at least one dose is the OBD admissible. • Challenge: consists of multiple hypotheses $(\sum_{j=1}^{J} j)$.

$H_1(u,v):$	$\pi_{T,1} =$	$\pi_{T,2} =$	$\cdots = \pi_{T,i}$	$\mu = \pi_{T,u+1}$	= • • • =
			accep	otable toxicity	
	$\pi_{E,1} =$	= $\pi_{E,2} =$	$\cdots = \pi_{E_s}$	$_{u} = \phi_{E,0}$	$\pi_{E,u+}$
		unaccep	$\mathbf{\dot{\mathbf{x}}}$ table efficacy	7	
where $u, $	$v \in \{0\}$	$,1,\ldots,$	$J\}$ and \imath	u < v.	
		d_1	d_2		
	Тох	$\phi_{T,1}$	$\phi_{T,0}$	$H_{1}(0,1)$	Тох
$H_1(0,1)$	Fff	φ	φ	<i>I</i> ₁ (0,1)	Eff
		$\Psi E,1$	$\Psi E,1$	U(0,2)	Тох
		V		<i>H</i> ₁ (0,2)	Eff
Selection			\checkmark		Тоу

- Additional challenge: the standard definition of power, which rejects the H_0 , is not sufficient to account for the characteristics of dose optimization. Generalized power I:
- $\beta_1(u,v) = \Pr(\text{reject } H_0 \text{ and all doses in } \mathcal{A} \text{ are truly safe and efficacious } | H_1(u,v))$
- Generalized power II: $\beta_2(u,v) = \Pr(\text{reject } H_0 \text{ and at least one dose in } \mathcal{A} \text{ is truly safe and efficacious})$ $| H_1(u, v) \rangle$

Тох

Eff

 $H_1(1,2)$

Define global power I and power II that encompasses all $H_1(u, v)$ as follows: $\beta_i = \min_{u,v \in \{0,\cdots,J\}, u < v} \beta_i(u,v), \text{ for } i = 1, 2.$

- Both generalized powers are stricter than the standard power.
- The choice of power depends on the characteristics of the trial and the user's tolerability of false positives.
- Power II is a good option when reducing the sample size is of top priority.

Peng Yang^{1,2} Daniel Li³ Ruitao Lin² Bo Huang⁴ Ying Yuan²

$$\sum_{j=1}^{J+1} j$$
).

(2)

$$H_1(j) = \begin{pmatrix} \pi_{T,1} = \cdots = \pi_{T,j-1} \\ \pi_{E,1} = \cdots = \pi_{E,j-1} \\ \text{safe but futile} \end{cases}$$

as

MERIT (Multiple-dosE RandomIzed Phase-II Trial) Design

- Randomize $J \times n$ patients equally to J doses;
- toxicity, respectively.
- toxicity events in dose arm d_i .

Optimal Design Parameters

The **optimal design**

parameters (n, m_T, m_E) are determined to **minimize** sample size *n* through numerical search such that the design controls the glob type I error (1) and power (3)at nominal values α^* and β^* .

Operating Characteristics

 $(\phi_{E,0}, \phi_{E,1}) = (0.2, 0.4).$

- Administration.
- Multiple-dose Randomized Phase II Trials for Dose Optimization. https://doi.org/10.48550/arXiv.2302.09612.

Software

Manuscript

Least Favorable Set

Theorem 1: Define the least favorable set $H_1 = \{H_1(j), j = 1, \dots, J\}$, where $\pi_{T,i} = \phi_{T,1}$ $\pi_{T,i} = \phi_{T,1}$ $\pi_{T,i+1} = \cdots = \pi_{T,J} = \phi_{T,0}$ $\underline{-1} = \phi_{E,0} \quad \underline{\pi}_{E,j} = \phi_{E,1} \quad \underline{\pi}_{E,j+1} = \cdots = \pi_{E,J} = \phi_{E,1}$ safe and efficacious toxic and efficacious

For any $H_1(u, v)$, with $u, v \in \{0, 1, 2, \dots, J\}$ and u < v, there exists an $H_1(j)$ such that $\beta_i(j) \leq \beta_i(u, v)$, i = 1, 2, where $\beta_1(j)$ and $\beta_2(j)$ denote the generalized power I and II under $H_1(j)$, respectively. The global power in (2) can be equivalently defined

 $\beta_i = \min_{j \in \{1,...,J\}} \beta_i(j)$ for i = 1, 2.

(3)

• Specify target global type I error and power α^* and β^* ;

• In any dose arm d_i , if $n_{E,i} \ge m_E$ and $n_{T,i} \le m_T$, we reject H_0 and claim that d_j is OBD admissible, where m_E and m_T are decision boundaries for efficacy and

* $n_{E,i}$ and $n_{T,i}$ are the total number of patients who experience efficacy and

• Optimal design parameters (n, m_T, m_E) of MERIT design, when J =2, $(\phi_{T,0}, \phi_{T,1}) = (0.4, 0.2)$, and $(\phi_{E,0}, \phi_{E,1}) = (0.2, 0.4)$.

		β_1						β_2					
	β^*	$\alpha^* = 0.1$			$\alpha^* = 0.2$		$\alpha^* = 0.1$			$\alpha^* = 0.2$			
		n	m_T	m_E	n	m_T	m_E	n	m_T	m_E	n	m_T	m_E
bal	0.6	26	7	6	23	6	26	25	6	5	18	5	4
<u></u> <u> </u>	0.7	33	9	7	30	8	33	33	8	6	24	7	5
	0.8	44	12	8	39	11	44	39	11	8	30	8	5

Type I error and power of MERIT design when $(\phi_{T,0}, \phi_{T,1}) = (0.4, 0.2)$ and

References

• U.S. Food And Drug Administration. (2022). Project Optimus: Reforming the dose optimization and dose selection paradigm in oncology. Silver Spring, MD: Food and Drug Administration. • U.S. Food And Drug Administration. (2023). *Optimizing the Dosage of Human Prescription Drugs* and Biological Products for the Treatment of Oncologic Diseases. Rockville, MD: Food and Drug

Yang, P., Li, D., Lin, R., Huang, B., Yuan, Y. (2023). Design and Sample Size Determination for