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Intratumor heterogeneity (ITH) 

q ITH of tumor-infiltrated leukocytes (TILs) is an important 

phenomenon of cancer biology with potentially profound 

clinical impacts. 

q Multi-region sequencing data provides a promising 

opportunity that allows the exploration of ITH, i.e.,

q TRACERx study revealed the association of SCNA to patient 

prognosis (Jamal-Hanjani et al. 2017);

q AbdulJabbar et al. 2020 studied differentiate highly 

immune-infiltrated tumor regions by the number of immune 

hot and cold tumors at a population level reveal patient 

survival. 



Background

Peng Yang (Rice University)

Intratumor heterogeneity (ITH) 

q ITH of tumor-infiltrated leukocytes (TILs) is an important 

phenomenon of cancer biology with potentially profound 

clinical impacts. 

q Multi-region sequencing data provides a promising 

opportunity that allows the exploration of ITH, i.e.,

q TRACERx study revealed the association of SCNA to patient 

prognosis (Jamal-Hanjani et al. 2017);

q AbdulJabbar et al. 2020 studied differentiate highly 
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Motivation

q However, none of these studies have systemaDcally studied the intratumor heterogeneiDes of TILs, which 

may provide valuable insights into cancer biology and personalized cancer treatment. 

q ComputaDonal methods have developed to study 

the composiDon of the TIL in bulk gene expression 

data:

q CIBERSORT applies linear support vector regression 

(SVR) (A. M. Newman et al. 2015);

q EPIC employs a weighted least squares and imposes 

weights on informaSve genes. (A. M. Newman et al. 2015 )

q However, none of these methods developed for ITH and not suitable for multi-region design. 
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Aim

q In this work, we aim to develop a computational method:

q decompose mixed bulk gene expression data to estimate the relative immune cell abundance while 

accounting for the within-subject correlation.

q assess the intratumor heterogeneity by the variability of cellular compositions from immune cells for 

each patient and seek its association with the survival outcomes.
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Reference profile construcDon

q Let 𝑋!"# represents an observed cell-type-specific reference

q 𝑣 indicate the sample index belong to cell type 𝑘

q 𝑔 indicate the gene index

q 𝑘 indicate the cell type

q The observed gene expression is modeled as log-normal 

distribuDon

q EsSmated cell-type-specific mean expression �̂�!"

q EsSmated cell-type-specific variability  &𝜆!"

Linear space Log space
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Mixed bulk data

q Consider a study of 𝑁 paDents. Let 𝐼$( 𝐼$ > 1) denote the tumor sample index for paDent 𝑖.

q Let 𝑌%" represent the mixed gene expression from sample 𝑠 𝜖 𝐼$

q ℎ#" is the unobserved cellular composition.

q 𝑊#!" is a three-dimensional tensor that stands for the hidden.

q 𝜖#! is the error term that follow a normal distribution with mean 0 

and variance 1/𝜆#!.

Pa:ent 1 Patient 2
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q ℎ#" is the unobserved cellular composiSon.
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Model hidden variables – cell-type-specific gene expression

q To characterize intratumor heterogeneity within the sample paDent subject, a hierarchical Bayesian approach 

is taken in two steps:

q First, we allow each paSent to have his or her own pure cell type profile parameters 𝜇$!"

where the hidden gene expression, 𝑊#!", also follows a log normal distribuSon.

We then center the patient-specific mean expression to cell-type-specific mean expression

q 𝜌!" controls how much informaSon we borrow from the mean reference profile.

q 𝛼!" and 𝛽!" determine the prior knowledge of the variability of gene expression.
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Model hidden variables – cell-type-specific gene expression

q To characterize intratumor heterogeneity within the sample paDent subject, a hierarchical Bayesian approach 

is taken in two steps:

q First, we allow each paSent to have his or her own pure cell type profile parameters 𝜇$!"

where the hidden gene expression, 𝑊#!", also follows a log normal distribuSon.

We then center the paSent-specific mean expression to cell-type-specific mean expression

q 𝜌!" controls how much information we borrow from the mean reference profile.

q 𝛼!" and 𝛽!" determine the prior knowledge of the variability of gene expression.

�̂�!" &𝜆!"
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Model hidden variables – relaDve cell type abundance

q Second, we use Dirichlet distribuDon to model the proporDons of cell types for each sample  

where

q 𝝅 is a K by 1 vector pooled across all samples with ∑# 𝜋# = 1.

q 𝐶$ is a paDent-specific parameter that controls the variability of the cellular composiDon across 

samples within each paDent, 

q 𝐶$ tends to be small, it indicates a more heterogeneity cellular composiSon 

q 𝐶$ tends to be large, it indicates a more homogeneous cellular composiSon
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Likelihood approximation

q Recall the observed gene expression 𝑌%" can be decomposed as:

q However, there is no closed form solution for a summation of independent log-normal distribution. We, 

therefore, adopt the Fenton-Wilkinson (FW) approximation (Fenton 1960) to approximate the likelihood by 

another log-normal distribution as follows:
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Overview of model structure
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Collapse over the hidden gene expression 

q We adopt Collapsed VariaDonal Bayesian (CVB) method to opDmize the model.

q ComputaSonally more efficient than MCMC.

q To perform CVB method, we first marginalize over the hidden variables 𝜇$"#’s and 𝜆"#’s 
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VariaDonal parameters

q To esDmate the remaining hidden variables, we introduce the following variaDonal distribuDons:

where

q 𝑄(3) denotes the variational distribution to approximate the posterior distribution. 

q {𝛾$!"}$,!,", {𝜏!"}!," and {𝜉#"}#," are variational parameters to be optimized.

q In total, there are 𝑁 × 𝐺 × 𝐾 + 𝐺 × 𝐾 + 𝑆 × 𝐾 parameters to be estimated.
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DerivaDon of the evidence lower bound

q Let 𝑍 = (𝑊,𝐻) denote the unobserved variables of interests and 𝜽 = (𝜶, 𝜷, 𝝆, 𝝁, 𝝀) denote the hyper-

parameters.

q We applied Limited-memory BFGS to maximize this objecSve funcSon iteraSvely.

q The gradients with respect to variaSonal parameters have been derived to speed the opSmizaSon.



q The relaDve cell type abundance can be esDmated by variaDonal parameters.

q specifically for cell type 𝑘, 

q The expectaDon of the fracDon of cell type k can be obtained as

q The intratumor heterogeneity score 𝐶$ for each paDent can be computed through the first and second 

moments,

Model op0miza0on

Peng Yang (Rice University)

Empirical soluDon through moments

where
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SimulaDon se[ngs and results

q We consider 100 paDent, with 4 to 8 

samples randomly assigned to each 

paDent.

q Mixed gene expression with 500 genes 

and 4 cell types are generated. 

q We esDmated the cell types and 

benchmarked our results with 

CIBERSORT and EPIC.
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Simula0on

Peng Yang (Rice University)

SensiDvity analysis and results

q We consider 100 patient, with fixed 

number of samples for each patient.

q Mixed gene expression with 500 genes 

and 4 cell types are generated. 

q We estimated the cell types and 

benchmarked our results with 

CIBERSORT and EPIC.
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Real data applica0on

Peng Yang (Rice University)

TRACERx Study

q The mulD-region RNA-seq data are available in 45 paDents with 140 samples in total.
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Conclusion

Peng Yang (Rice University)

q In this project, we proposed a Bayesian hierarchical model, ICeITH, 

to esDmate the relaDve cell type abundance by leveraging the 

prior informaDon while accounDng for the within-subject 

correlaDons.

q ICeITH assesses the intratumor heterogeneity by quanDfying the 

variability of the targeted cellular composiDon and reveals the 

associaDon between heterogeneity of immune cells to the paDent 

survival.

q We develop an efficient variaDonal inference approach to the 

model esDmaDon, and the method is available through a user-

friendly R package on Github

(hcps://github.com/pengyang0411/ICeITH).
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