A novel Bayesian model for assessing intratumor heterogeneity of tumor infiltrating leukocytes with multiregion gene expression sequencing

Peng Yang

Rice University
Aug 10, 2023

Contents

\square Background
\square Background knowledge

- Motivation
\square Statistical method
\square Model development
\square Optimization
\square Simulation study
\square Settings
\square Results interpretations
\square Real data application
\square TRACERx study
\square Conclusion

Background

Intratumor heterogeneity (ITH)

\square ITH of tumor-infiltrated leukocytes (TILs) is an important phenomenon of cancer biology with potentially profound clinical impacts.
\square Multi-region sequencing data provides a promising opportunity that allows the exploration of ITH, i.e.,
\square TRACERx study revealed the association of SCNA to patient prognosis (Jamal-Hanjani et al. 2017);
\square AbdulJabbar et al. 2020 studied differentiate highly immune-infiltrated tumor regions by the number of immune hot and cold tumors at a population level reveal patient
 survival.

Background

Intratumor heterogeneity (ITH)

\square ITH of tumor-infiltrated leukocytes (TILs) is an important

Multiregion Mutation and Copy-Number Analysis phenomenon of cancer biology with potentially profound clinical impacts.
\square Multi-region sequencing data provides a promising opportunity that allows the exploration of ITH, i.e.,
\square TRACERx study revealed the association of SCNA to patient prognosis (Jamal-Hanjani et al. 2017);
\square AbdulJabbar et al. 2020 studied differentiate highly immune-infiltrated tumor regions by the number of immune

B Disease-free Survival According to Percentage of Subclonal Mutations

C Disease-free Survival According to Percentage of Subclonal Copy-Number Alterations

(Jamal-Hanjani et al. 2017) survival.

Background

Motivation

\square However, none of these studies have systematically studied the intratumor heterogeneities of TILs, which may provide valuable insights into cancer biology and personalized cancer treatment.
\square Computational methods have developed to study the composition of the TIL in bulk gene expression data:
\square CIBERSORT applies linear support vector regressior (SVR) (A. M. Newman et al. 2015);

- EPIC employs a weighted least squares and impose weights on informative genes.

\square However, none of these methods developed for ITH and not suitable for multi-region design.

Background

Aim

In this work, we aim to develop a computational method:
\square decompose mixed bulk gene expression data to estimate the relative immune cell abundance while accounting for the within-subject correlation.
\square assess the intratumor heterogeneity by the variability of cellular compositions from immune cells for each patient and seek its association with the survival outcomes.

Statistical model

Reference profile construction

\square Let $X_{v g k}$ represents an observed cell-type-specific reference

- v indicate the sample index belong to cell type k
- g indicate the gene index
- k indicate the cell type

$$
\log \left(X_{v g k}\right) \sim N\left(\mu_{g k}^{r}, \frac{1}{\lambda_{g k}^{r}}\right)
$$

\square The observed gene expression is modeled as log-normal distribution
\square Estimated cell-type-specific mean expression $\hat{\mu}_{g k}$
\square Estimated cell-type-specific variability $\hat{\lambda}_{g k}$

		CT 1	CT 1	CT 2	CT 2	CT 3	CT 3
	Gene 1	243	823	45	30	537	299
	Gene 2	46	52	20	7	46	41
log-normal	Gene 3	99	50	90	69	38	25
	Gene 4	95	45	17	23	25	11
	Gene 5	111	187	26	22	17	
	Gene 6	90	45	19	6	21	
	Gene 7	644	415	167	98	125	57
$\hat{\mu}_{g k}$	Gene 8	100	58	133	6	49	18
	Gene 9	15	7	111	9	5	32
	Gene 10	107	164	44	113	14	22
	Gene 11	4582	3270	2104	5756	860	672
	Gene 12	321	151	32	60	250	310
	Gene 13	425	617	69	230	42	155

Statistical model

Mixed bulk data

\square Consider a study of N patients. Let $I_{i}\left(\left|I_{i}\right|>1\right)$ denote the tumor sample index for patient i.
\square Let $Y_{s g}$ represent the mixed gene expression from sample $s \in I_{i}$

$$
\log \left(Y_{s g}\right)=\sum_{k} h_{s k} W_{s g k}+\epsilon_{s g}, \text { for } s \in I_{i}
$$

Patient 1

Sample 1 Sample 2 Sample 3 Sample 4

- $h_{s k}$ is the unobserved cellular composition.$W_{s g k}$ is a three-dimensional tensor that stands for the hidden.
- $\epsilon_{s g}$ is the error term that follow a normal distribution with mean 0 and variance $1 / \lambda_{s g}$.

Patient 2

Gene 1	$\boxed{y y y}$	83	134	134
Gene 2	22	62	78	249
Gene 3	48	171	145	24
Gene 4	50	28	53	33
Gene 5	118	67	60	164
Gene 6	21	74	36	21
Gene 7	80	219	148	144
Gene 8	28	45	49	29
Gene 9	6	12	19	19
Gene 10	47	179	49	135
Gene 11	3301	3670	643	5192
Gene 12	120	206	415	147
Gene 13	370	537	257	420

Statistical model

Mixed bulk data

\square Consider a study of N patients. Let $I_{i}\left(\left|I_{i}\right|>1\right)$ denote the tumor sample index for patient i.
\square Let $Y_{s g}$ represent the mixed gene expression from sample $s \in I_{i}$

$$
\log (Y)=\sum_{k} h_{k}^{\hat{\mu}_{k}}+\epsilon, \text { for } s \in I_{i}
$$

- $h_{s k}$ is the unobserved cellular composition.$W_{s g k}$ is a three-dimensional tensor that stands for the hidden.
$\square \epsilon_{s g}$ is the error term that follow a normal distribution with mean 0 and variance $1 / \lambda_{s g}$.

Statistical model

Model hidden variables - cell-type-specific gene expression

\square To characterize intratumor heterogeneity within the sample patient subject, a hierarchical Bayesian approach is taken in two steps:
\square First, we allow each patient to have his or her own pure cell type profile parameters $\mu_{\text {igk }}$

$$
\log \left(W_{s g k}\right) \stackrel{\text { i.i.d }}{\sim} N\left(\mu_{i g k}, \frac{1}{\lambda_{g k}}\right) \text {, for } s \in I_{i},
$$

where the hidden gene expression, $W_{\text {sgk }}$, also follows a log normal distribution.
We then center the patient-specific mean expression to cell-type-specific mean expression

$$
\mu_{i g k} \stackrel{\text { i.i.d }}{\sim} N\left(\mu_{g k}, \frac{1}{\rho_{g k} \lambda_{g k}}\right), \text { for } i \in 1, \ldots, N, \quad \lambda_{g k} \sim \operatorname{Gamma}\left(\alpha_{g k}, \beta_{g k}\right) .
$$

- $\rho_{g k}$ controls how much information we borrow from the mean reference profile.
$\square \alpha_{g k}$ and $\beta_{g k}$ determine the prior knowledge of the variability of gene expression.

Statistical model

Model hidden variables - cell-type-specific gene expression

\square To characterize intratumor heterogeneity within the sample patient subject, a hierarchical Bayesian approach is taken in two steps:
\square First, we allow each patient to have his or her own pure cell type profile parameters $\mu_{\text {igk }}$

$$
\log \left(W_{s g k}\right) \stackrel{\text { i.i.d }}{\sim} N\left(\mu_{i g k}, \frac{1}{\lambda_{g k}}\right) \text {, for } s \in I_{i},
$$

where the hidden gene expression, $W_{s g k}$, also follows a log normal distribution.
We then center the patient-specific mean expression to cell-type-specific mean expression

$$
\mu_{i g k} \stackrel{\text { i.i.d }}{\sim} N\left(\stackrel{\mu_{g k}}{\mu_{g k}}, \frac{1}{\rho_{g k} \lambda_{g k}}\right), \text { for } i \in 1, \ldots, N, \quad \lambda_{g k} \sim \operatorname{Gamma}\left(\sqrt[\alpha_{g k}, \beta_{g k}]{\alpha_{g}}\right) \text {. }
$$

- $\rho_{g k}$ controls how much information we borrow from the mean reference profile.
- $\alpha_{g k}$ and $\beta_{g k}$ determine the prior knowledge of the variability of gene expression.

Statistical model

Model hidden variables - relative cell type abundance

\square Second, we use Dirichlet distribution to model the proportions of cell types for each sample

$$
h_{s 1}, \ldots, h_{s K} \sim \operatorname{Dir}\left(C_{i} \boldsymbol{\pi}\right)
$$

where
π is a K by 1 vector pooled across all samples with $\sum_{k} \pi_{k}=1$.
$\square C_{i}$ is a patient-specific parameter that controls the variability of the cellular composition across samples within each patient,
$\square C_{i}$ tends to be small, it indicates a more heterogeneity cellular composition
$\square C_{i}$ tends to be large, it indicates a more homogeneous cellular composition

Statistical model

Likelihood approximation

Recall the observed gene expression $Y_{s g}$ can be decomposed as:

$$
\log \left(Y_{s g}\right)=\sum_{k} h_{s k} W_{s g k}+\epsilon_{s g}, \text { for } s \in I_{i}
$$

However, there is no closed form solution for a summation of independent log-normal distribution. We, therefore, adopt the Fenton-Wilkinson (FW) approximation (Fenton 1960) to approximate the likelihood by another log-normal distribution as follows:

$$
\log \left(Y_{s g}\right)=N\left(\log \left(\sum_{k} h_{s k} W_{s g k}\right), \frac{1}{\lambda_{s g}}\right), \text { for } s \in I_{i}, i=1, \ldots, n
$$

Statistical model

Overview of model structure

Model optimization

Collapse over the hidden gene expression
\square We adopt Collapsed Variational Bayesian (CVB) method to optimize the model.

- Computationally more efficient than MCMC.
\square To perform CVB method, we first marginalize over the hidden variables $\mu_{i g k}$'s and $\lambda_{g k}$'s

$$
\begin{aligned}
& \prod_{i=1}^{N} \prod_{s \in I_{i}} P\left(\log \left(W_{s g k}\right) \mid \mu_{g k}, \rho_{g k}, \alpha_{g k}, \beta_{g k}\right) \\
= & \int_{\lambda} \int_{\mu} \prod_{i=1}^{N} \prod_{s \in I_{i}} p\left(\log \left(W_{s g k}\right) \mid \mu_{i g k}, \lambda_{g k}\right) \times p\left(\mu_{i g k} \mid \mu_{g k}, \lambda_{g k}, \rho_{g k}\right) \times p\left(\lambda_{g k} \mid \alpha_{g k}, \beta_{g k}\right) d \mu_{1 g k} \cdots d \mu_{N g k} d \lambda_{g k} \\
= & \frac{\Gamma\left(\alpha_{n}\right)}{\Gamma\left(\alpha_{g k}\right)} \frac{\beta_{g k}^{\alpha_{g k}}}{\beta_{n}^{\alpha_{n}}} \frac{\rho_{g k}^{N / 2}}{\prod_{i=1}^{N} \sqrt{\left|I_{i}\right|+\rho_{g k}}}(2 \pi)^{-\frac{\sum_{i} I_{i}}{2}},
\end{aligned}
$$

where $\alpha_{n}=\frac{\sum_{i} I_{i}}{2}+\alpha_{g k}, \log \left(\bar{W}_{\text {sgk }}\right)=\frac{1}{\left|I_{i}\right|} \sum_{s \in I_{i}} \log \left(W_{s g k}\right)$, and

$$
\beta_{n}=\beta_{g k}+\frac{1}{2} \sum_{i}\left\{\sum_{s \in I_{i}}\left(\log \left(W_{s g k}\right)-\log \left(\bar{W}_{s g k}\right)\right)^{2}+\frac{\rho_{g k}\left|I_{i}\right|\left(\log \left(\bar{W}_{s g k}\right)-\mu_{g k}\right)^{2}}{\left|I_{i}\right|+\rho_{g k}}\right\} .
$$

Model optimization

Variational parameters

\square To estimate the remaining hidden variables, we introduce the following variational distributions:

$$
\begin{aligned}
Q\left(\log \left(W_{s g k}\right) \mid \gamma_{i g k}, \tau_{g k}\right) & \sim N\left(\gamma_{i g k}, \tau_{g k}^{2}\right), \text { for } s \in I_{i}, i=1,2, \ldots, N ; g=1,2, \ldots, G ; k=1,2, \ldots, K ; \\
Q\left(h_{s 1}, \ldots, h_{s K} \mid \xi_{s 1}, \ldots, \xi_{s K}\right) & \sim \operatorname{Dir}\left(\xi_{s 1}, \ldots, \xi_{s K}\right) \text { for } s \in I_{i} ; i=1,2, \ldots, N ; k=1,2, \ldots, K,
\end{aligned}
$$

where

- $Q(\cdot)$ denotes the variational distribution to approximate the posterior distribution.
$\square\left\{\gamma_{i g k}\right\}_{i, g, k},\left\{\tau_{g k}\right\}_{g, k}$ and $\left\{\xi_{s k}\right\}_{s, k}$ are variational parameters to be optimized.
- In total, there are $(N \times G \times K)+(G \times K)+(S \times K)$ parameters to be estimated.

Model optimization

Derivation of the evidence lower bound

Let $Z=(W, H)$ denote the unobserved variables of interests and $\boldsymbol{\theta}=(\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\rho}, \boldsymbol{\mu}, \boldsymbol{\lambda})$ denote the hyperparameters.

$$
\begin{aligned}
\log (P(Y)) & \geq \underbrace{E_{Q(W, H)}\left\{\log \frac{P(Y, W, H \mid \boldsymbol{\theta})}{Q(W, H)}\right\}}_{\mathrm{ELBO}} \\
& \geq \underbrace{\int Q(W) Q(H) \log \left(\frac{P(Y \mid W, H, \boldsymbol{\theta}) P(W \mid \boldsymbol{\theta}) P(H)}{Q(W) Q(H)}\right) d Z}_{\mathrm{a}} \\
& \geq \underbrace{E_{Q}\{\log P(Y \mid W, H, \lambda)\}}_{\mathrm{b}}+\underbrace{E_{Q}\{\log P(W \mid \mu, \rho, \alpha, \beta)\}}_{\mathrm{b}}+\underbrace{E_{Q}\{\log P(H \mid C, \pi)\}}_{\mathrm{c}} \\
& -\underbrace{E_{Q}\{\log P(W \mid \gamma, \tau)\}}_{\mathrm{c}}-\underbrace{E_{Q}\{\log P(H \mid \xi)\}}_{\mathrm{e}} .
\end{aligned}
$$

We applied Limited-memory BFGS to maximize this objective function iteratively.
The gradients with respect to variational parameters have been derived to speed the optimization.

Model optimization

Empirical solution through moments

\square The relative cell type abundance can be estimated by variational parameters.
\square specifically for cell type $k, \hat{h}_{s k}=\frac{\xi_{s k}}{\sum_{c} \xi_{s c}}$
\square The expectation of the fraction of cell type k can be obtained as $E\left[h_{\cdot k}\right]=\frac{C_{i} \pi_{k}}{C_{i} \sum_{c} \pi_{c}}=\hat{\pi}_{k}$
\square The intratumor heterogeneity score C_{i} for each patient can be computed through the first and second moments,

$$
\hat{C}_{i}=f_{C}\left(\hat{\pi}_{k}, \hat{h}_{s k}\right) \stackrel{\mathrm{c}}{=} \frac{\sum_{k} \hat{\pi}_{k}\left(1-\hat{\pi}_{k}\right)}{\sum_{k} \operatorname{var}\left(h_{s k}\right)}
$$

where $\sum_{k} \operatorname{var}\left(h_{s k}\right)=\sum_{k} \frac{\hat{\pi}_{k}\left(1-\hat{\pi}_{k}\right)}{C_{i}+1}$

Simulation

Simulation settings and results

\square We consider 100 patient, with 4 to 8 samples randomly assigned to each patient.
\square Mixed gene expression with 500 genes and 4 cell types are generated.
\square We estimated the cell types and benchmarked our results with CIBERSORT and EPIC.
(b) Estimated CT Proportions

(e) CIBERSORT

(c) Estimated ITH From ICeITH

(f) EPIC

Simulation

Sensitivity analysis and results

- We consider 100 patient, with fixed number of samples for each patient.
\square Mixed gene expression with 500 genes and 4 cell types are generated.
\square We estimated the cell types and benchmarked our results with CIBERSORT and EPIC.
(a) Estimated CT Proportions

(c) Estimated ITH From ICelTH

(b) Estimated CT Proportions

(d) Standard Errors of Sampling Distribution ${ }_{\text {Type }}$

Real data application

TRACERx Study

\square The multi-region RNA-seq data are available in 45 patients with 140 samples in total.

Conclusion

\square In this project, we proposed a Bayesian hierarchical model, ICeITH, to estimate the relative cell type abundance by leveraging the prior information while accounting for the within-subject correlations.
\square ICeITH assesses the intratumor heterogeneity by quantifying the variability of the targeted cellular composition and reveals the association between heterogeneity of immune cells to the patient survival.
\square We develop an efficient variational inference approach to the model estimation, and the method is available through a userfriendly R package on Github
 (https://github.com/pengyang0411/ICeITH).

Reference

- AbdulJabbar, Khalid et al. (2020). "Geospatial immune variability illuminates differential evolution of lung adenocarcinoma". In: Nature Medicine 26.7, pp. 1054-1062.
- Andrade Barbosa, B'arbara et al. (2021). "Bayesian log-normal deconvolution for enhanced in silico microdissection of bulk gene expression data". In: Nature communications 12.1, pp. 1-13.
] Jamal-Hanjani, Mariam et al. (2017). "Tracking the evolution of non-small-cell lung can- cer". In: New England Journal of Medicine 376.22, pp. 2109-2121.
D Newman, Aaron M et al. (2015). "Robust enumeration of cell subsets from tissue expression profiles". In: Nature methods 12.5, pp. 453-457.
- Racle, Julien and David Gfeller (2020). "EPIC: a tool to estimate the proportions of dif- ferent cell types from bulk gene expression data". In: Bioinformatics for Cancer Im- munotherapy. Springer, pp. 233-248.
W Wilson, Douglas R et al. (2020). "ICeD-T Provides Accurate Estimates of Immune Cell Abundance in Tumor Samples by Allowing for Aberrant Gene Expression Patterns". In: Journal of the American Statistical Association 115.531, pp. 1055-1065.

